Chapter 2- Sets

 

Section 2.1

 

1- The Cartesian product of set A and B which is denoted as A x B is

                   a  A and b  B.

           

a)     Multiplicative product of a x b

b)    Set of all ordered pairs (a, b)

c)     Collection of all the subsets

d)    Set of unordered pair (a, b) or (b, a)

 

 

2- What is the number of subsets for the power set P() and P()?

 

a)      1 for both

b)     2 for both

c)      1 and 2 respectively

d)     2 and 1 respectively

 

 

Section 2.2, 2.3

 

1- Let A = {1,2,3,4,5}and B = { 0,3,6}. Each of the following operations produces a set. Which of those sets has {0,1,3} as a subset?

 

a) A_B.

b) A_B.

c) A_B.

d) B _A.

 

2- Find the sets A and B if A-B ={ 1,5,7,8}, B-A = {2,10}, and A_B ={ 3,6,9}.

 

a) A={1,5,7,8}             B={2,10}

b) A={1,3,6,9}             B={2,3,6,9,10}

c) A={1,3,5,6,7,8,9}   B={2,3,6,9,10}

d) A={1,3,5,6,7,8,9}   B={2,3,6,9}

 

 

3- If f is defined from R to R such that f(x)=1/x, is f a function?

a)     True

b)    False

 

 

Section 2.4 Summation and Sequences

 

1- Which is an example of a geometric progression?

a)     1,3,5,7,9,11

b)    0,1,1,2,3,5,8

c)     1,2,3,5,8,13

d)    1,2,4,8,16,32

 

 

2- 

a) n(n+1)

 

 

 

 

 

Section 2.5 Cardinality of Sets

 

1- What is the cardinality of the following sets?

 

1.         |{ }|= ?

2.         | {2,5,6} | = ?

3.         | { 1,4,1,5,2,1,5,2,4 } | = ?

 

a) 0, 3, 9

b) 1, 3, 9

c) 0, 3, 4

d) 1, 4, 4

 

 

2- Which of the following sets are uncountable sets?

1.         Natural numbers

2.         Integers

3.         Rational numbers

4.         Real numbers

5.         complex numbers

 

a)         3 and 5

b)         4 and 5

c)         1 and 3

d)         1 and 5