Discrete Mathematics Quiz 4

Name: _____

NYU Net ID: _____

1.) Select the set that is equal to: {3, 5, 7, 9, 11, 13 }

- a. $\{x : x \in Z \text{ and } 3 < x < 14\}$
- b. $\{x : x \in R \text{ and } 3 \le x < 14\}$
- *C. { $x : x \in \mathbb{Z}$ and x is odd and $3 \le x \le 14$ }
- d. { $x : x \in \mathbb{Z}$ and x is prime and $3 \le x < 14$ }

1.2) Use the definitions below to select the statement that is true.

A = {x : $x \in Z$ and x is even} B = {x : $x \in Z$ and -4 < x < 17} a. A is finite. b. $B \subseteq A$ c. $A \subset A$ *d. A \cap B = {x : $x \in Z$ and x is even and -4 < x < 17}

1.3) Use the definition below to select the statement that is false.

A = {x : x \in Z and x is even and 4 < x < 17} a. 4 \notin A b. 6 \in A c. 17 \notin A *d. |A| = 7 2.1) A = {x : x \in Z and x is even} C = {3, 5, 9, 12, 15, 16} Select the true statement.

a. C - A = {12, 16} *b. C - A = {3, 5, 9, 15} c. C - A = {3, 5, 9, 12, 15} d. The set C - A is infinite.

2.2) $B = \{x : x \in \mathbb{Z} \text{ and } x \text{ is a prime number}\}$ $C = \{3, 5, 9, 12, 15, 16\}$ The universal set U is the set of all integers. Select the set corresponding to $\overline{B} \cap C$. a. $\{3, 5\}$ b. $\{9, 12, 16\}$ c. {3, 5, 9, 15} *d. {9, 12, 15, 16}

2.3) $C = \{3, 5, 9, 12, 15, 16\}$ $D = \{5, 7, 8, 12, 13, 15\}$ Select the set corresponding to $C \oplus D$. a. $\{3, 9, 16\}$ b. $\{5, 12, 15\}$ *c. $\{3, 7, 8, 9, 13, 16\}$ d. $\{3, 5, 7, 8, 9, 12, 13, 15, 16\}$

3.1) A = {a, b} B = {1, 2, 3} Select the expression that is an element of $B \times A \times B$. a. (1, 3, b) *b. (3, b, 1) c. (b, 3, 1) d. (b, 1, 3)

3.2) A = {a, b} B = {1, 2, 3} Select the expression that is an element of $A \times B \times B$. a. (1, 3, b) b. (3, b, 1) *c. (b, 3, 1) d. (1, b, 3)

3.3) A = {a, b} B = {1, 2, 3} Select the expression that is an element of $A \times B \times A$. a. (a, b, 3) b. (3, b, b) *c. (b, 3, b) d. (3, b, 3)

4.1) What is the power set of {1, 2, 3}? Answer: { ∅, {1}, {2}, {3}, {1, 2}, {2, 3}, {1, 3}, {1, 2, 3} }

4.2) What is the power set of {a, b, c}? Answer: { ∅, {a}, {b}, {c}, {a, b}, {b, c}, {a, c}, {a, b, c} }

4.3) What is the power set of {-1, 0, 1}? Answer: { ∅, {-1}, {0}, {1}, {-1, 0}, {-1, 1}, {0, 1}, {-1, 0, 1} }

Choose one between 5) and 6) 5) Given the table below

Operation	Notation	Description	
Intersection	AnB	$\{x : x \in A \text{ and } x \in B\}$	
Union	ΑυΒ	$\{x : x \in A \text{ or } x \in B \text{ or both }\}$	
Difference	A - B	$\{x : x \in A \text{ and } x \notin B\}$	
Symmetric difference	<mark>A ⊕</mark> B	$\{x : x \in A - B \text{ or } x \in B - A\}$	
Complement	Ā	{x:x∉A}	

Use set identity and logic:

- 5.1) Show that if A and B are sets then $A B = A \cap \overline{B}$.
- 5.2) Prove the associative law that if A, B, and C are sets, then $A \cup (B \cup C) = (A \cup B) \cup C$.
- 5.3) Prove the associative law that if A, B, and C are sets, then $A \cap (B \cap C) = (A \cap B) \cap C$.

Example: to prove $A \cap B = B \cap A$,

$X \in A \cap B$	\leftrightarrow	$\{x \mid x \in A \land x \in B\}$	by definition
$\{x \mid x \in A \land x \in B\}$	\leftrightarrow	$\{x \mid x \in B \land x \in A\}$	by commutative law
$\{x \mid x \in B \land x \in A\}$	\leftrightarrow	$X \in B \cap A$	by definition

Solution of 5) 5.1) Both sides equal {x | x $\in A \land x \notin B$ }. $A - B = \{x | x \in A \land x \notin B\}$ by definition $A \cap \overline{B} = \{x | x \in A \land x \notin B\}$ by definition So $A - B = A \cap \overline{B}$ 5.2) Both sides equal {x | x $\in A \lor x \in B \lor x \in C$ } $A \cup (B \cup C) = \{x | x \in A \rbrace \cup \{x | x \in B \lor x \in C\}$ by definition $= \{x | x \in A \lor x \in B \lor x \in C\}$ by definition $(A \cup B) \cup C = \{x | x \in A \lor x \in B\} \cup \{x | x \in C\}$ by definition $= \{x | x \in A \lor x \in B \lor x \in C\}$ by definition $= \{x | x \in A \lor x \in B \lor x \in C\}$ by definition $= \{x | x \in A \lor x \in B \lor x \in C\}$ by definition $= \{x | x \in A \lor x \in B \lor x \in C\}$ by definition $= \{x | x \in A \lor x \in B \lor x \in C\}$ by definition $= \{x | x \in A \lor x \in B \lor x \in C\}$ by definition So $A \cup (B \cup C) = (A \cup B) \cup C$ 5.3) Both sides equal $\{x | x \in A \land x \in B \land x \in C\}$

$$\begin{array}{ll} A \cap (B \cap C) &= \{x \mid x \in A\} \cap \{x \mid x \in B \land x \in C\} & \text{by definition} \\ &= \{x \mid x \in A \land x \in B \land x \in C\} & \text{by definition} \\ (A \cap B) \cap C &= \{x \mid x \in A \land x \in B\} \cap \{x \mid x \in C\} & \text{by definition} \\ &= \{x \mid x \in A \land x \in B \land x \in C\} & \text{by definition} \\ &= \{x \mid x \in A \land x \in B \land x \in C\} & \text{by definition} \\ &\text{So } A \cap (B \cap C) = (A \cap B) \cap C \end{array}$$

6) Given the table of set identities:

Name	Identities		
Idempotent laws	A u A = A	A n A = A	
Associative laws	(A u B) u C = A u (B u C)	(A ∩ B) ∩ C = A ∩ (B ∩ C)	
Commutative laws	A u B = B u A	A n B = B n A	
Distributive laws	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	
Identity laws	A u Ø = A	$A \cap U = A$	
Domination laws	Anø=ø	A u <i>U</i> = <i>U</i>	
Double Complement law	$\overline{\overline{A}} = A$		
Complement laws	$A \cap \overline{A} = \emptyset$ $\overline{U} = \emptyset$	$A \cup \overline{A} = U$ $\overline{\varnothing} = U$	
De Morgan's laws	$\overline{A \cup B} = \overline{A} \cap \overline{B}$	$\overline{A \cap B} = \overline{A} \cup \overline{B}$	
Absorption laws	A u (A n B) = A	A n (A u B) = A	

prove the following new identities. Label each step in your proof with the set identity used to establish that step.

a) $\overline{A} \cap (A \cup B) = \overline{A} \cap B$

- b) $(\overline{A} \cap C) \cup (A \cap C) = C$
- c) $\overline{A} \cup (A \cap B) = \overline{A} \cup B$
- d) $A = (A \cap B) \cup (A \cap \overline{B})$

For a), b), and c) see text section 3.5 exercise 3.5.2 solutions. Solution of d) is similar to exercise 3.5.2 b.