Discrete Mathematics Quiz 5

Name: _____

NYU Net ID: _____

Each question carries one point.

- 1.1) Select the expression that is equal to $(3^{k+1})^2$
- a) 3^{*k*+2}
- b) 3^{*k*+3}
- c) 3^{2k+1}
- *d) 3^{2k+2}
- 1.2) Select the value that is equal to $\lfloor log_2 29 \rfloor$
- a) 2
- b) 3
- *c) 4
- d) 5
- 1.3) Select the expression that is equal to $\frac{\log_5 k^3}{\log_5 2^7}$
- *a) *log*₃*k*
- b) log_5k
- **c)** $log_{27}k$
- d) $3log_5(k/3)$

х	У	Z	f(x, y, z)
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0

2.1) Select the Boolean expression that is equivalent to the function defined in the table below:

1	1	1	0
			-

- a) $\overline{x}y\overline{z} + \overline{x}yz$
- *b) $\overline{x}y\overline{z} + \overline{x}yz + x\overline{y}z$
- c) $\overline{x}y\overline{z} + xyz + x\overline{y} \ \overline{z}$
- d) $\overline{x}y\overline{z} + \overline{x}yz + x\overline{y}z + xyz$

2.2) Select the Boolean expression that is equivalent to the function defined in the table below:

Х	У	Z	f(x, y, z)
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

- a) $x\overline{yz} + xyz$
- b) $x\overline{y} \ \overline{z} + \overline{x} \ \overline{y} \ \overline{z}$
- *C) $x\overline{y} \ \overline{z} + xyz$
- d) $x\overline{yz} + \overline{xyz}$

2.3) Select the Boolean expression that is equivalent to the function defined in the table below:

Х	у	Z	f(x, y, z)
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

*a) $\overline{x} \ \overline{y} \ \overline{z} + \overline{x}y\overline{z} + xyz$

- b) $\overline{x} \ \overline{y} \ \overline{z} + x\overline{y}z + xyz$
- c) $\overline{xyz} + x\overline{y}z + xyz$
- d) $\overline{xyz} + \overline{x}y\overline{z} + xyz$

- 3.1) Select the expression that is equivalent to $(x + \overline{y})z$
- a) $\overline{x+y} + \overline{z}$
- b) $\overline{\overline{x+\overline{y}}}+z$
- c) $\overline{x+\overline{y}+\overline{z}}$
- *d) $\overline{\overline{x+\overline{y}}} + \overline{z}$

3.2) Select the Boolean expression that is equivalent to x + y.

- a) $(x\uparrow x)\downarrow(y\uparrow y)$
- *b) $(x\uparrow x)\uparrow(y\uparrow y)$
- c) $(x\uparrow y)\downarrow(x\uparrow y)$
- d) $(x \downarrow x) \downarrow (y \downarrow y)$

3.3) Select the Boolean expression that is equivalent to xy.

- a) $(x \downarrow y) \uparrow (x \downarrow y)$
- b) $(x\uparrow x)\uparrow(y\uparrow y)$
- c) $(x \downarrow y) \downarrow (x \downarrow y)$
- *d) $(x\uparrow x)\downarrow(y\uparrow y)$

4.1) Select the Boolean expression that is not satisfiable.

- a) $(x+y)(x+z)(y+\overline{z})$
- *b) $(\overline{x+y})(x+z)(y+\overline{z})$
- c) $(\overline{x} + \overline{y})(x + z)(y + \overline{z})$
- d) $(\overline{xy})(x+z)(y+\overline{z})$

4.2) Consider a school with two periods during which classes can be scheduled. For each class, there are two variables. For example, for class A, there are variables x_{A1} and x_{A2} . Setting $x_{A2} = 1$ represents scheduling class A during period 2. Select the Boolean expression that is true if and only if class A is scheduled during exactly one of the two periods.

- **a)** $(x_{A1}x_{A2})(\overline{x_{A1}} + \overline{x_{A2}})$
- **b)** $(x_{A1} + x_{A2})(\overline{x_{A1}} \ \overline{x_{A2}})$
- *C) $(x_{A1} + x_{A2})(\overline{x_{A1}x_{A2}})$
- d) $(x_{A1}x_{A2})(\overline{x_{A1} + x_{A2}})$

4.3) Consider a school with two periods during which classes can be scheduled. For each class, there are two variables. For example, for class A, there are variables x_{A1} and x_{A2} . Setting $x_{A2} = 1$ represents scheduling class A during period 2. Select the Boolean expression that is true if and only if classes A and B are not scheduled during the same period.

a)
$$(\overline{x_{A1} + x_{B1}})(\overline{x_{A2} + x_{B2}})$$

*b) $(\overline{x_{A1}x_{B1}})(\overline{x_{A2}x_{B2}})$

c)
$$(\overline{x_{A1} + x_{A2}})(\overline{x_{B1} + x_{B2}})$$

d)
$$(\overline{x_{A1}x_{A2}})(\overline{x_{B1}x_{B2}})$$

5.1) Suppose that f is a function from A to B and g is a function from B to C, show that if both f and g are one-to-one functions, then $g \circ f$ is also one-to-one.

Suppose that $a1 \in A$ and $a2 \in A$ for which $g \circ f(a1) = g \circ f(a2)$. Then by definition of composition of functions $g(f(a1)) = g \circ f(a1) = g \circ f(a2) = g(f(a2))$. Since $g : B \to C$ is a one-to-one function and $f(a1) \in B$ and $f(a2) \in B$ and g(f(a1)) = g(f(a2)), it follows that f(a1) = f(a2). Since $f : A \to B$ is a one-to-one function and $a1 \in A$ and $a2 \in A$ and f(a1) = f(a2), it follows that a1 = a2. Therefore, if $g \circ f(a1) = g \circ f(a2)$ then a1 = a2. By the definition of one-to-one $g \circ f$ is one-to-one.

5.2) Suppose that f is a function from A to B and g is a function from B to C, show that if both f and g are onto functions, then $g \circ f$ is also onto.

For every $c \in C$, $\exists b \in B$ such that c=g(b), by surjectivity (onto) of g. For that same b, $\exists a \in A$ such that b=f(a), by surjectivity of f. So for every $c \in C$, $\exists a \in A$ such that $c=g(f(a)) = g \circ f(a)$, i.e., $g \circ f$ is (onto)

5.3) Suppose that f is a function from A to B and g is a function from B to C, show that if $g \circ f$ is onto then g is also onto.

Since $g \circ f$ is onto, for $c \in C$, $\exists a \in A$ such that $g \circ f(a) = g(f(a)) = c$. Let $f(a) = b, b \in B$, and g(b) = cSo, for any $c \in C$, $\exists b \in B$ such that g(b) = c, Therefore, g is onto. 5.4) Suppose that f is a function from A to B and g is a function from B to C, show that if $g \circ f$ is one-to-one then f is also one-to-one.

Suppose f is not one to one, then there must be $x,y \in A$, $x \neq y$ such that f(x)=f(y) and therefore g(f(x))=g(f(y)) but this means $g \circ f$ is not one to one and this is a contradiction. So f must be one to one.