Discrete Mathematics Quiz 6

Name:			
NYU Net ID:			

1.1) Select the set that corresponds to the relation given in the arrow diagram below:

1.2) Select the set that corresponds to the relation given in the matrix representation below. Rows of the matrix are numbered 1 through 4 from top to bottom and columns are numbered 1 through 4 from left to right.

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

1.3) A relation R is given in the matrix representation below. Rows of the matrix are numbered 1 through 4 from top to bottom and columns are numbered 1 through 4 from left to right. Select the expression that is false.

$$\begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

- a. 2R2
- b. 3R4
- c. 4R1
- *d. 4R3

1.4) Select the set that corresponds to the relation given in the arrow diagram below:

- a. { (1, 3), (1, 4), (2, 3) }
- b. { (1, 3), (1, 4), (3, 2) }
- *c. { (1, 3), (1, 4), (2, 3), (2, 2) }
- d. { (1, 3), (1, 4), (3, 2), (2, 2) }

2.1) Graph G is defined by the arrow diagram below.

Select the properties that accurately describe the following sequence with respect to graph G:

- $\langle 2, 3, 1, 3, 4 \rangle$
- a. Not a walk
- b. A walk but not a trail
- *c. A trail but not a path
- d. A trail and a path

2.2) Graph G is defined by the arrow diagram below.

Select the pair of vertices such that there is no walk of length 4 in G from the first vertex to the second vertex.

- a. 1, 3
- *b. 1, 4
- c. 2, 1
- d. 4, 3

2.3) Graph G is defined by the arrow diagram below.

What is the out-degree of vertex 2?

- a. 1
- b. 2
- *c. 3
- d. 5

2.4) Graph G is defined by the arrow diagram below.

Select the statement about G that is false.

- a. G has a cycle of length 1
- b. G has a cycle of length 3
- c. G has a circuit of length 4
- *d. G has a circuit of length 5

3.1) The figure below shows an arrow diagram for a partial relation:

What are the maximal elements in the partial order?

- a. 7, 8
- b. 1, 3, 5
- *c. 1, 3, 5, 8
- d. 1, 2, 3, 5, 8

3.2) The figure below shows an arrow diagram for a partial relation:

Which elements are not comparable to 4?

- a. 1, 2
- *b. 3, 8
- c. 2, 6, 8
- d. 1, 2, 8

3.3) The figure below is a Hasse diagram for a partial order:

Which elements are not comparable to F?

- *a. D
- b. B, D
- c. A, B, D

3.4) The figure below is a Hasse diagram for a partial order:

What are the minimal elements?

- a. E
- b. E, D
- *c. E, D, H
- d. E, D, F, H
- 4.1) The domain of relation R is the set of all integers. x R y if $|x y| \le 1$. Which statement correctly characterizes the relation R?
- a. R is an equivalence relation.
- b. R is not an equivalence relation because R is not reflexive.
- c. R is not an equivalence relation because R is not symmetric.
- *d. R is not an equivalence relation because R is not transitive.
- 4.2) The domain of relation R is $Z \times Z$. (a, b)R(c, d) if a = c or b = d or both. Which statement correctly characterizes the relation R?
- a. R is an equivalence relation.
- b. R is not an equivalence relation because R is not reflexive.
- c. R is not an equivalence relation because R is not symmetric.
- *d. R is not an equivalence relation because R is not transitive.
- 4.3) The domain of relation R is Z x Z. (a, b)R(c, d) if $a \le c$ and $b \le d$. Which statement correctly characterizes the relation R?
- a. R is an equivalence relation.
- b. R is not an equivalence relation because R is not reflexive.
- *c. R is not an equivalence relation because R is not symmetric.
- d. R is not an equivalence relation because R is not transitive.

- 4.4) The domain of relation R is Z x Z. (a, b)R(c, d) if a b = c d. Which statement correctly characterizes the relation R?
- *a. R is an equivalence relation.
- b. R is not an equivalence relation because R is not reflexive.
- c. R is not an equivalence relation because R is not symmetric.
- d. R is not an equivalence relation because R is not transitive.
- 5) Below is a database showing the daily train schedule for a train station.

Departure Time	Destination	Track	Local/Expres
			S
8:00AM	Brussels	1	Express
9:15AM	Helsinki	2	Local
9:22AM	Munich	1	Local
9:32AM	Helsinki	1	Express
11:00AM	Amsterdam	1	Express
11:17AM	Helsinki	2	Local
11:44AM	Amsterdam	2	Local

What series of operations should be performed in order to get the departure times of all the Express trains to Amsterdam?

Answer.

SELECT[Destination = "Amsterdam" and Express/Local = "Express"]
PROJECT[Departure Time]