Discrete Mathematics Quiz 8

Name: _____

NYU Net ID:

1.1) Select the description that fits the sequence below: 8, 5, 2, 2, 1, -1

a. Non-decreasing but not increasing

b. Non-increasing and decreasing

*c. Non-increasing but not decreasing

d. Non-decreasing and increasing

1.2) What is the common ratio of the following geometric sequence? 27, 9, 3, 1, ...

a. 27

b. 9

c. 3

*d. 1/3

1.3) The sequence $\{f_n\}$ starts with an index of 1 and is defined so that f_n is the largest integer k such that $k^2 \le n$. Which sequence fits the definition of $\{f_n\}$? a. 1, 4, 9, 16, 25, ... *b. 1, 1, 1, 2, 2, ... c. 2, 4, 8, 16, 32, ... d. 1, 2, 3, 4, 5, ...

2.1) A sequence $\{a_n\}$ is defined as follows: $a_0 = 2$, $a_1 = 1$, and for $n \ge 2$, $a_n = 3 \cdot a_{n-1} - n \cdot a_{n-2} + 1$. What is a_3 ? *a. -2 b. -1 c. 1 d. 2

2.2) A sequence is defined by the recurrence relation $f_n = n \cdot f_{n-1} - f_{n-3}$. How many initial values are required so that the sequence is well defined for all $n \ge 0$? a. 0 b. 1 c. 2 *d. 3

2.3) A population of mice increases by 10% every year. Define g_n to be the number of mice after n years. Select the recurrence relation that describes the sequence $\{g_n\}$.

a. $g_n = (1.01) \cdot g_{n-1}$ *b. $g_n = (1.1) \cdot g_{n-1}$ c. $g_n = (.01) \cdot g_{n-1} + g_{n-2}$ d. $g_n = (.1) \cdot g_{n-1} + g_{n-2}$

3.1) The inductive step of an inductive proof shows that for $k \ge 0$, if $\sum_{j=0}^{k} 2^j = 2^{k+1} - 1$, then

 $\sum_{j=0}^{k+1} 2^j = 2^{k+2} - 1.$ In which step of the proof is the inductive hypothesis used? $\sum_{j=0}^{k+1} 2^j = \sum_{j=0}^k 2^j + 2^{k+1} \qquad (Step 1)$ $= (2^{k+1} - 1) + 2^{k+1} \qquad (Step 2)$ $= 2 \cdot 2^{k+1} - 1 \qquad (Step 3)$ $= 2^{k+2} - 1 \qquad (Step 4)$ a. Step 1 *b. Step 2 c. Step 3 d. Step 4

3.2) The inductive step of an inductive proof shows that for $k \ge 4$, if $2^k \ge 3k$, then $2^{k+1} \ge 3(k+1)$. In which step of the proof is the inductive hypothesis used?

$2^{k+1} \ge 2 \cdot 2^k$	(Step 1)
$\geq 2 \cdot 3k$	(<i>Step</i> 2)
$\geq 3k + 3k$	(Step 3)
$\geq 3k+3$	(Step 4)
$\geq 3(k+1)$	(<i>Step</i> 5)
a. Step 1	
*b. Step 2	
0.01	

c. Step 3

d. Step 4

3.3) The inductive step of an inductive proof shows that for $k \ge 4$, if $2^k \ge 3k$, then $2^{k+1} \ge 3(k+1)$. Which step of the proof uses the fact that $k \ge 4 \ge 1$?

 $2^{k+1} \ge 2 \cdot 2^k \qquad (Step \ 1)$ $\ge 2 \cdot 3k \qquad (Step \ 2)$ $\ge 3k + 3k \qquad (Step \ 3)$ $\ge 3k + 3 \qquad (Step \ 4)$ $\ge 3(k + 1) \qquad (Step \ 5)$ a. Step 2 b. Step 3 *c. Step 4 d. Step 5

4.1) Q(n) is a statement parameterized by a positive integer n. The following theorem is proven by induction:

Theorem: For any positive integer n, Q(n) is true.

What must be proven in the inductive step?

- a. For any integer $k \ge 1$, Q(k-1) implies Q(k).
- b. For any integer $k \ge 1$, Q(k) implies Q(n).
- c. For any integer $k \ge 1$, Q(k).
- *d. For any integer $k \ge 1$, Q(k) implies Q(k+1).

4.2) The sequence $\{g_n\}$ is defined recursively as follows: $g_0 = 1$, and $g_n = 3 \cdot g_{n-1} + 2n$, for $n \ge 1$. If the theorem below is proven by induction, what must be established in the inductive step? Theorem: For any non-negative integer n, $g_n = \frac{5}{2} \cdot 3^n - n - \frac{3}{2}$.

- a. For $k \ge 0$, if $g_k = 3 \cdot g_{k-1} + 2k$, then $g_{k+1} = \frac{5}{2} \cdot 3^{k+1} - (k+1) - \frac{3}{2}$.
- *b. For $k \ge 0$, if $g_k = \frac{5}{2} \cdot 3^k k \frac{3}{2}$, then $g_{k+1} = \frac{5}{2} \cdot 3^{k+1} - (k+1) - \frac{3}{2}$.
- c. For $k \ge 0$, if $g_k = 3 \cdot g_{k-1} + 2k$, then $g_{k+1} = 3 \cdot g_k + 2(k+1)$.
- d. For $k \ge 0$, if $g_k = \frac{5}{2} \cdot 3^k k \frac{3}{2}$, then $g_{k+1} = 3 \cdot g_k + 2(k+1)$.

4.3) Select the mathematical statements to correctly fill in the beginning of the proof of an inductive step below:

We will assume for $k \ge 1$ that 7 evenly divides $6^{2k} - 1$ and will prove that 7 evenly divides $6^{2(k+1)} - 1$. Since, by the inductive hypothesis, 7 evenly divides $6^{2k} - 1$, then 6^{2k} can be expressed as (A?), where m is an integer.

 $6^{2(k+1)} - 1 = 6^{2} \cdot 6^{2k} - 1$ = (B?) by the ind. hyp. = ... a. (A): 7m (B): 36(7m) - 1 *b. (A): 7m + 1 (B): 36(6^{2k}) - 1 c. (A): 7m (B): 36(6^{2k}) - 1 d. (A): 7m + 1 (B): 36(6^{2k}) - 1 5.1) Compute the value of the sum $\sum_{k=-2}^{3} k^{2}$. Answer: 19

5.2) Compute the value of the sum $\sum_{k=-2}^{3} (k+1)^2$. Answer: 31

5.3) Compute the value of the sum $\sum_{k=-2}^{2} (k-1)^2$. Answer: 15