
Infrastructure 
Engineering

Intro to Computer Science (Spring 2021)

Prashant Patel
03/26/2020



Table of Content
•About Me

•Introduction to Infrastructure Engineering
• What is Infrastructure Engineering?
• On Prem vs. Cloud Computing
• On Prem
• Cloud Computing
• Infrastructure-as-Code
• Software-As-Service

•DevOps
• Reduce Org Silos
• Accept Failure as normal
• Implement Gradual Change
• Leverage tooling and automation
• Measure everything

•Distributed Systems
• Case Study: Uber

•AWS Lab
• URL Shortener

Table of Content

* 2



About Me

* 3

About Me
• Computer Science Graduate from NYU Tandon School of 

Engineering (2016 – 2018)

• IBM

• Advisory Software Engineer (2018 – 2020)

• Amazon Web Services

• Software Development Engineer (2020 – Present)

• LinkedIn : https://www.linkedin.com/in/prashant182/

https://www.linkedin.com/in/prashant182/


Introduction to 
Infrastructure 
Engineering



What is Infrastructure Engineering?

Three main pilers of infrastructure engineering

1.Storage 

2.Compute

3.Network

* 5

Storage
Compute

Network

Operations with Infrastructure

•Provisioning
•Deprovisioning
•Scaling
•Descaling
•Upgrading



* 6

vs

On Prem vs. Cloud Computing
On Prem 

•Virtualization Stack (VMWare)
•Storage Devices
•Network Switches

Cloud Computing
•Elastic Computing Instances
•Functions as a Service (i.e Lambda)
•Storage as a Service (i.e. S3, Ceph, Rook.io)
•Network as a Service (i.e. VPC, Virtual Sockets)
•Containers as a Service (i.e. Kubernetes, Docker)



* 7

vs

On Prem

Pros Cons
• In some industries it provides 

more security of data than 
the counter part. 

• Complete control over all 
aspects of maintenance

• Single Point of Failure

• Proving to be more 
costly 

• Slower Technology 
Adaptation

• Limited choice of options 
for deployment / 
infrastructure. 



* 8

vs

Cloud Computing

Pros Cons
• Much cheaper compared to 

counterpart

• Wide variety of 
infrastructure components 
to choose from 

• Durability and on demand 
scaling is backed in.

• For developers focus is 
more on code than the 
infrastructure. 

• Security of data can be 
of challenge if cloud is 
compromised.

• Vendor lock in makes 
migration harder

• Steep learning curve for 
platform specific APIs 
for developers.

• Cost / operation ratio 
may not work in favor 
with scale. 



* 9

Cloud Computing



* 10

Infrastructure-as-Code (IaC)
• Infrastructure as Code is a practice by where traditional infrastructure management techniques 

are supplemented and often replaced by using coding based tools and software development 
practices. 

• Moving to cloud based model adds new possibility on how infrastructure is seen. 

• Infrastructure component can be provisioned / deprovisioned in seconds. 

• Scaling can be achieved without capacity planning. 

• Most of the cloud providers vend APIs for infrastructure lifecycle. APIs open doors for lot of tooling 
and automation. 

• All the coding practices and standers can be applied. Linting, Version Control, Code Reviews, 
Performance optimization etc.

• Example snippets.
 



* 11

Software-As-Service (SaaS)
A software distribution model in which applications are hosted by a vendor or a 
service provider and made available over a private or public network. 

In SaaS model software is deployed as a hosted service and accessed over the 
specified network interface, as opposed to ”On Premise”

Packaged Software Software As a Service

• Upto the customer to maintain the lifecycle 
(install, upgrade, remove)

• Typically a one time fee association with this 
sort of software. Not designed to scale with 
the proportion of users that simultaneously 
access it. 

• Ideal for onprem deployment

• Designed from the outset up for the delivery 
as network based service. 

• Designed to run multitude of different users 
in a single deployment. 

• Lifecycle is maintained by the software 
developer, abstracted from consumers. 



* 12

Who gets to do this?

• SRE (Site Reliability Engineer)

• DevOps Engineer

• SDE (Software Development Engineer)

• Systems Engineer



* 13

DevOps
Key principals for an “Infrastructure Engineer” to live by

•Reduce Organization Silos

•Accept Failure as normal 

•Implement Gradual Change (Deploy with confidence)

•Leverage Tooling and Automation 

•Measure Everything



* 14

Reduce Organization Silos
• Promote the reusability of the components

• Create common infrastructure patterns

• Share the Failures / Success stories, learn from the mistakes of others

• Common patterns can help with the common understanding of problems and 
allow larger audience to contribute

• SLO (Service Level Objectives) – Objective that your team must meet. 

• SLI (Service Level Indicators) - The real numbers on the performance of 
Service

• SLA (Service Level Agreement) –The agreement you make to your client. 



* 15

Accept Failure as normal
• Failures happen and there is no real way to avoid them. Learn to live with failures. 

• Failures could be due to Bug in the code, Hardware failure, human mistakes, dependency 
degradation etc. 

• Failure mitigation strategies can help. 
• Caching
• Redundancies
• Graceful termination

• Make sure failures are properly detected. 

• Always prioritize mitigation over the resolution.

• Learn from the mistakes share it with other orgs



* 16

Implement Gradual Change 
• This is generic to all the software development practices. Not specific to SRE.

• Small changes are easy to detect / understand. They are easy to rollback to. 

• Small changes help in reducing the integration cost. 

• Scenario : DataBase migration and scale to keep up with the incoming traffic. 
• You might want to migrate the database first
• You might want to verify the migration
• Once verified database can be scaled. 

• Small changes tell a greater story about the product journey and it’s lifecycle. 

• IaC is a code too. It applies everywhere. 



* 17

Leverage tooling and automation
• Developer tooling is probably one of the most important and fundamental principals 

• There are so many tools, Docker, Python, Ansible, Jenkins, Terraform, Cloud Specific SDK.

• Automation is always better than manual human interaction. It’s auditable, testable, scalable, 
reliable. 

• Allows developers to spend more time on business problem than to do manual tedious tasks. 

• Have automated pipelines and processes for
• Continuous delivery (CD)
• Continuous Integration (CI)
• System Monitoring 
• Alerting
• Orchestration 
• Change Management
• Release Management. Etc. 



* 18

Measure Everything.
• Metrics are literally the key to success. 

• Data driven process allows for better decision making. 

• Every change in the system can be evaluated using various metrics.

• Metrics allows you to be ready for the peak. Helps with Auto scale in many instances

• Metrics followed by Alarms is the way to go. 

• i.e. For a typical distributes system you can measure
• Average Latency 
• Number of calls on a given minutes
• Number of Faults
• Number of new consumers
• Peak traffic time



The Case of 
Distributed Systems



* 20

Distributed Systems
• Textbook definition “A distributed system is a collection of independent computers, interconnected 

via network and capable on collaborating on a task”



Case Study : “Uber”

Case Study

* 21



AWS Lab

URL Shortener




