OS Linux

Scheduling 1n 3.x Kernels

Denny

The Linux Operating system can execute multiple processes simultaneously, although only one
process can be actually executed by a processor at an instance. Multiprocessors allows multiple
tasks to run in parallel. There additionaly are processes that are sleeping or waiting to be killed.
The part of the kernel, which is responsible for granting CPU time to tasks, is called process

scheduler.

Location of a Scheduler in Linux

aé Linux kernel SCI (System Call Interface) D
Memory Process
1/0 subsystem management management
subsystem subsystem
é Linux kernel) (")
Virtual File System Signal
- Paging process/thread
page creation &
- replacement termination
Linux kernel
Process
Scheduler
_/ o J
- J

Image courtesy Wikipedia

Priority
Priority shows the importance of a certain task. One of the factors that determine how much
running time a task gets and how often it is preempted is priority.

Types of Priority

Static Priority Type:

e Value used by the scheduler to rate the process with respect to the other processes in the

system

e For example: static priority of normal non realtime processes is a number ranging from

100 (highest priority) to 139 (lowest priority);
¢ time quantum duration assigned to the process depends on its priority
Dynamic Priority Type:
e [s the number actually looked up by the scheduler when selecting the new process to run

e s also a number ranging from 100 (highest priority) to 139 (lowest priority); One example
of such a situation is when the system lifts a task’s priority to a higher level for a period of
time, so it can preempt another high-priority task

Process Terminologies

Active :
Allowed to run processes with unexhausted time quantums

Expired:
Not allowed to run processes sicne they have already used their time slices. They will be
run after they are made to wait for a long time .

Interactive process:
Interacts with the user hence must have stricter scheduling requirements. They can be
active or expired.

Batch Process:
These processes such as compilation, data fetch can have looser constraints.

Real Time processes:
These are associated with a special real-time priority, where the values range from 1
(highest priority) to 99 (lowest priority).

10-bound
One that depends on constant interrupt from the 10 devices.

Processor-bound
A processor-bound task is the one in which the instruction sequence is executed
consecutively on the processor until it is either preempted or finished.

Scheduling Policies

Policies basically mean special scheduling decisions for a group of processes such as longer time

slices, higher priorities, etc. Following are the scheduling policies currently
e SCHED NORMAL.: the scheduling policy that is used for regular tasks;

e SCHED BATCH: does not preempt nearly as often as regular tasks would, thereby allowing
tasks to run longer and make better use of caches but at the cost of interactivity. This is well suited

for batch jobs (CPU-intensive batch processes that are not interactive);

e SCHED IDLE: Is a very low priority though not an idle task. Some background system threads

obey this policy, mainly not to disturb normal way of things;

e SCHED FIFO and SCHED_RR are for soft real-time processes. Handled by real-time scheduler
in and specified by POSIX standard. RR implements round robin method, while SCHED FIFO

uses first in first out queuing mechanism.

CFS

The scheduler used in Linux is called a Completely Fair Scheduler (CFS) which is essentially an
O(log n) algorithm that depends on a red-black tree. The Completely Fair Scheduler aims to be fair
to all different priority processes by giving appropriate time slices to each process depending on

their run time values stored.

CFS uses a time-ordered red black tree to build a "timeline" of future tasks. The elements of the red
black tree are the processes or tasks keyed with the value of their run times. The smaller the run
time key, the more to the left of the tree a node is. The scheduler always picks the leftmost node as
the next task to run. CFS uses priority as a decay factor for the time a task is permitted to execute.

Lower-priority tasks have higher factors of decay and vice versa.

A scheduler using CFS does the scheduling during a timer interrupt. During an interrupt, the

scheduler examines the current state of affairs and can preempt the current task if it used all its

time slice or there is a task with smaller virtual runtime in the tree or even if there is a newly

created task.

Internals

The main files concerned :

Linux/kernel/sched.c,

Linux/kernel/sched/fair.c

e task struct

Each process has a task structure associated with it that defines all the properties of the process

including details such as its static priority , scheduling class and associated policies, state, cpu

associated, time slice etc.(linux/sched.h)

1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527

struct
#ifdef

#endif

#ifdef

#ifdef

task struct |
CONFYG_THREAD_INFO_IN_TASK
/*
* For reasons of header soup (see current_thread_i_ufo ()), this
* must be the first element of task_struct.
-
/

struct thread info thread info;

volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
void *stack;

atomic t usage;

unsign;d int flags; /* per process flags, defined below */
unsigned int ptrace;

CONFIG SMP
struct 1llist node wake entry;
int on cpu; - 7
CONFIG_EHREAD INFO_IN TASK

unsigned int cpu; /* current CPU */

e runque structure

In process scheduling runqueues are the central data structure which holds all the tasks in a

runnable state. Each CPU will have an associated run queue. Every run queue there is will have

http://lxr.free-electrons.com/source/?v=2.6.39
http://lxr.free-electrons.com/source/kernel/?v=2.6.39
http://lxr.free-electrons.com/source/kernel/sched.c?v=2.6.39

some processes in them linked together as a list. No process will be lying in two runqueues. In CFS

model the runqueue is not structured as the usual linear queue rather ,as discussed, a Red Blue Tree

The rbtree data structure is represented by struct cfs rq.

/* CFS-related fields in a rungueue */
309 struct cfs_rqg {

310 struct lecad weight load;

311 unsigned long nr_running;

31z

313 ue4 exec_cleck;

314 ué4 min vruntime;

31s

31¢ struct rb_rocot tasks_timeline;

317 struct rb _necde *rb_ leftmost;

318

318 struct list_head tasks;

320 struct list_head *balance_iterator;
321

322

3z2¢e struct sched_entity *curr, *next, *last, *skip;
327

328 unsigned int nr_spread over;

3239
330 gifdef CONFIG_FAIR GROUP_SCHED

331 struct rqg *rqg; /* cpu runqueue tc which this cfs_rqg is attached */
332

333

341 int on_list;

342 struct list_head leaf cfs_rq list;

343 struct task _group *tg; /* group that "owns" this rungqueue */

344

e sched entity

For each task the scheduling parameters are summarized as a structure which is named
sched_entity. Details such as node position, timestamp started, current and previous run times, load

weight etc are contained in this structure.

As shown in the following figure the associations between tasks , scheduling entities and the rbtree

1s as below

Tasks
(task struct)

Schedule entity

Cpu no#
priority

Schedule entity

Cpu no#
priority

Schedule entity

Cpu no#
priority

Scheduling
parameters
(sched_entity)

node . g

vruntimel rb root

rb_node
Cfs_rq

Min vruntime

— node2 — Q

vruntime?2

—F node3 — g

vruntime3

Scheduling Function

The schedule function will be either called right away if a process need to be blocked immediately

if suppose some resource is not available. Also it is called when a process runs out of its time slice.

The following are the steps for scheduling a task.

When the linux timer interrupts , the scheduler tick () is called. During each time of the scheduler

tick , the run time is subtracted for the current process in the runqueue. This is taken care of by the

scheduler tick() function’s update rq clock() call. The initial time slice can be set during the time

of process creation or can be changed dynamically as discussed earlier.

http://lxr.free-electrons.com/ident?i=update_rq_clock

3072 /*
3073 * This function gets called by the timer code, with HZ frequency.
3074 * We call it with interrupts disabled.

3075 */

3076 void scheduler_tick(void)

3077 {)

3078 int cpu = smp processor id() ;
3079 struct rgq *rq-= cpu rq(zbu);

3080 struct task struct *curr — rg->curr;
3081 -)
3082 sched clock tick() ;

3083

3084 raw_spin_lock(&rq—>lock);

3085 update_rq_clock(rq); -

3086 curr->sched_class4>task_tick(rq, curr, 0);
3087 cpu_load_update_active(rq); -
3088 calc global load tick(rg) ;

3089 raw spin unlock(&rg->lock) ;

3090 ‘

3091 perf_evenp_task tick() ;

3092

3093 #ifdef CONFIG_SMP

3094 rq—>idle_balance = idle cpul(cpu) ;
3095 trigger load balance(rqy; '

3096 #endif)

3097 rq last tick reset(rq) ;

The schedule() function is the core area of the Linux scheduling process.(kernel/sched.c)

/*
* schedule() is the main scheduler function.
*/

asmlinkage void _ sched schedule (void)

{
struct task struct *prev, *next;
unsigned lo;g *switch_countf -
struct rq *rq;
int cpu}- .

The current CPU, the runqueue of the current CPU and the current process from the runqueue are

identified initially as can be ssen in the figure.

cpu = smp processor id();
rqb= cpu_rq(cpu);blm -

rcu note_context_switch(cpu);
pfé; %'rq¥>éuff} S oERAEER

Next the current process is put back to the rbtree with a call to put_prev_task() . Later the next task
is taken from the rbtree with the call to pick next task().[function internally calls
pick next task fair() which is defined in sched/fair.c]

4132

4133 put prev task(rqg, prev);

4134 nexz = pIc:k_next task(rqg) ;
4135 clear tsk need rgsched(prev) ;
4136 rq->inp Elock—updateA= 0;
4137 ' a a

In essense a task with the smallest virtual run time is to be selected next. For which this function
simply picks the left-most task from the red-black tree and returns the associated sched_entity .

4140 rg->curr = next;

4141 ++*switch count;

4142 a

4143 context switch(rq, prev, next); /* unlocks the rq */

4144 /* B ' '

4145 * The context switch have flipped the stack from under us
4146 * and restored the local variables which were saved when
4147 * this task called schedule() in the past. prev == current
4148 * is still correct, but it can be moved to another cpu/rq.
4149 */

Up next the context switch() function is called for restoring the stack to the version that was earlier

saved by this new task when it got preempted earlier.

http://lxr.free-electrons.com/ident?i=pick_next_task_fair

