
Homework 5: Graphs, Minimum Spanning Trees, and Dijkstra Shortest-Path 
  
  
1. (4 points) A graph is Hamiltonian if there is a cycle in the graph visiting each vertex 
exactly once. Give an example of an Eulerian graph that is not Hamiltonian, and a 
Hamiltonian graph that is not Eulerian. 
  
Answer: A Hamiltonian graph that is not Eulerian is K2, the complete graph on n 
vertices, for any n ≥ 2, since each vertex has odd degree. An Eulerian graph that is not 
Hamiltonian is, for 
example two simple cycles C[n], C[m] sharing a single vertex. 
 
  
2. (2 points) For an unweighted graph, DFS traversal of the graph produces: 
a. minimum spanning tree 
b. longest spanning tree 
c. all pair shortest path tree 
*d. both a and c 
  
Explanation: Minimum spanning tree is actually all pair shortest path. It visits all the 
nodes once. 
  
  
3.(4 points) We want to assign classrooms for each class. There are n classes that 
meet in a day. For each class, we know the start and end-time of the class. No two 
classes whose meeting times overlap can be assigned the same classroom. Further 
assume that each classroom is large enough, so that any class can be assigned any 
classroom. Suppose we want to fewest number of classrooms required to 
accommodate all classes. How can we model this problem as a graph problem? Give 
an example of a graph and how you’ll use a graph algorithm to solve this problem. 
 
Explanation: Model the classes as vertices of a graph, and an edge between two 
vertices if the corresponding classes overlap. Let the colors correspond to the 
classrooms. Then, the fewest number of colors required to color the vertices so that no 
adjacent vertices share the same color is the fewest number of classrooms required so 
that no two overlapping classes have to share the same classroom. 
 
  
  



5. (4 points) Write pseudo-code to detect a cycle in a graph. 
 
Answers:  
def isCyclicUtil(self, v, visited, recStack): 

  

        # Mark current node as visited and 

        # adds to recursion stack 

        visited[v] = True 

        recStack[v] = True 

  

        # Recur for all neighbours 

        # if any neighbour is visited and in 

        # recStack then graph is cyclic 

        for neighbour in self.graph[v]: 

            if visited[neighbour] == False: 

                if self.isCyclicUtil(neighbour, visited, 

recStack) == True: 

                    return True 

            elif recStack[neighbour] == True: 

                return True 

  

        # The node needs to be popped from 

        # recursion stack before function ends 

        recStack[v] = False 

        return False 

  

    # Returns true if graph is cyclic else false 

    def isCyclic(self): 

        visited = [False] * self.V 

        recStack = [False] * self.V 

        for node in range(self.V): 

            if visited[node] == False: 

                if self.isCyclicUtil(node,visited,recStack) == 

True: 

                    return True 

        return False 

 
  
 



6. ​Why can't Prim's or Kruskal's algorithms be used on a directed graph? 
 
Prim's and Kruskal's algorithm output a minimum spanning tree for connected and 
"undirected" graph. If it is not connected, we can tweak them to output minimum 
spanning forests. 

In Prim's algorithm, we divide the graph in two sets of vertices. One set of the explored 
vertices which have already formed MST (Set1) and another set of unexplored vertices 
which will eventually join the first set to complete "spanning"(Set2). At each instant, we 
select a minimum weighted edge in the cut joining the two disjoint sets. If there is no 
directed edge from explored nodes of MST to remaining unexplored, the algorithm gets 
stuck even though there are edges from unexplored nodes to explored nodes in MST. 

In Kruskal's algorithm, the idea is to sort the edges in ascending order by their weight 
and pick them up in order and include them in MST explored nodes/edges if they do not 
already form a cycle with explored nodes. This is done by Union-Find DS. But detection 
of cycle for directed graphs fails with this method. For ex: Graph containing edges [1->2] 
[2->3] [1->3] will be reported to contain a cycle with the Union-Find method. 

So Prim's fails because it assumes, every node is reachable from every node which 
though valid for undirected graphs may not be true for digraphs. Kruskal fails because 
of failure to detect cycles and sometimes it is essential to add edges making cycles to 
satisfy "minimum" weighted property of MST. 

Also, in case of digraphs, MST doesn't make complete sense. Its equivalent for 
digraphs is "minimum spanning arborescence" which will produce a tree where every 
vertex can be reached from a single vertex. 

Answer from: 
https://stackoverflow.com/questions/22649416/why-cant-prims-or-kruskals-algorithms-b
e-used-on-a-directed-graph/35685918#35685918 

 

https://stackoverflow.com/questions/22649416/why-cant-prims-or-kruskals-algorithms-be-used-on-a-directed-graph
https://stackoverflow.com/questions/22649416/why-cant-prims-or-kruskals-algorithms-be-used-on-a-directed-graph/35685918#35685918
https://stackoverflow.com/questions/22649416/why-cant-prims-or-kruskals-algorithms-be-used-on-a-directed-graph/35685918#35685918


7.​ (2 points) If my code represents a graph by {a: (b, c, d), b: (a), c: (a, d), d: (a, c)} then 
I am using a ______ to represent it? 

*a. adjacency list 
b. adjacency matrix 
c. incidence matrix 
d. adjacency incident 
 

8. (2 points) Consider the following adjacency matrix: 
    a   b   c   d   e   f   g 
a  0   0   1   0   1   0   1 
b  0   1   0   0   0   1   0 
c  1   0   0   0   0   1   1 
d  0   0   0   0   1   0   0 
e  1   0   0   1   0   0   0 
f   0   1   1   0   0   0   1 
g  1   0   1   0   0   1   0 
In the graph so described, there is a loop at vertex ___? 
a. a 
*b. b 
c. d 
d. f 
 
9. (2 points) Consider the graph with following adjacency matrix: 
    a   b   c   d  
a  0   1   1   0  
b  1   0   0   1  
c  1   0   0   1  
d  0   1   1   0  
Which of the following is an Eulerian circuit through that graph? 
a. a-c, c-b, b-d, d-a 
b. a-d, d-b, b-c, c-a 
*c. a-b, b-d, d-c, c-a 
d. a-b, b-c, c-d, d-a 
 
10. (2 points) Consider the graph described by the adjacency list {a: (b, c), b: (a, e), c: 
(b), d: (f, g) f: (d), g: (d)}. What are the connected components of that graph? 



a. a-b-c-d and e-f-g 
*b. a-b-c-e and d-f-g 
c. a-b-c-g and d-f-g 
d. the whole graph is connected 
 
11. (2 points) Consider the graph described by the adjacency list {a: (b, c, d), b: (a, c), c: 
(a, b, d), d: (a, c)}. Does it contain an Eulerian path? 
*a. Yes 
b. No 
c. Not enough information 
 

12. ​(2 points) ​Consider the following matrix for a weighted graph; in what order will 
Kruskal's add edges to the MST? 

    a   b   c   d   e   f   g   h 
a  0   8   0   0   0   0   0   0 
b  8   0   4   2   0   0   0   0 
c  0   4   0   11 0   3   0   0 
d  0   2  11  0   5   6   10 0 
e  0   0   0   5   0   0   0   0 
f   0   0   3   6   0   0   0   7 
g  0   0   0  10  0   0   0   9 
h  0   0   0   0   0   7   9   0 
 

a. b-d, b-c, d-e, c-f, f-h, a-b, g-h 
b. c-f, b-d, b-c, d-e, f-h, a-b, g-h 
*c. b-d, c-f, b-c, d-e, f-h, a-b, g-h 
d. b-d, c-f, b-c, d-e,  g-h, f-h, a-b 

 ​13. ​(2 points) ​Consider the following matrix for a weighted graph; in what order will 
Prim's add edges to the MST, if it starts at vertex a? 
    a   b   c   d   e   f   g   h 
a  0   8   0   0   0   0   0   0 
b  8   0   4   2   0   0   0   0 
c  0   4   0   11 0   3   0   0 
d  0   2  11  0   5   6   10 0 



e  0   0   0   5   0   0   0   0 
f   0   0   3   6   0   0   0   7 
g  0   0   0  10  0   0   0   9 
h  0   0   0   0   0   7   9   0 
 
a. a-b, c-f, b-c, d-e, f-h, b-d, g-h 
*b. a-b, b-d, b-c, c-f, d-e, f-h, h-g 
c. a-b, b-c, c-f, d-e, b-d, f-h, h-g 
d. a-b, c-f, b-d, b-c, d-e, f-h, h-g 

14. (2 points) Consider the graph described by the adjacency list {a: (b, c, d), b: (a, c), c: 
(a, b, d), d: (a, c)}. Does it contain an Eulerian circuit? 
a. Yes 
*b. No 
c. Not enough information 
 
15. ​(2 points) ​Consider the following matrix for a weighted graph; at what point will 
Dijkstra's shortest-path algorithm, looking for the shortest path from a to h, overwrite the 
previously recorded shortest path to an intermediate node? 
    a   b   c   d   e   f   g   h 
a  0   8   0   0   0   0   0   0 
b  8   0   4   2   0   0   0   0 
c  0   4   0   11 0   3   0   0 
d  0   2  11  0   5   6   10 0 
e  0   0   0   5   0   0   0   0 
f   0   0   3   6   0   0   0   7 
g  0   0   0  10  0   0   0   9 
h  0   0   0   0   0   7   9   0 
 
a. when it finds a new path to b 
b. when it finds a new path to e 
c. when it finds a new path to d 
*d. when it finds a new path to f  
 
 

  


