
Design and Analysis of Algorithms – Assignment 1

Q1. If f(n) = 3n2 + n3 lg n, then f(n) is
a. O(n2)
b. O(n3/2)
c. O(n3 lg n)
d. O(n2/3)
Answer: C

Reason : Highest power of n is n3 lg n. Hence answer C.

Q2. What is the asymptotic relationship between the functions: xp and kx?
(Assuming that p ≥ 1 and k > 1 are constants:)
a. xp is O(kx)
b. kx is O(xp)
c. x is O(k)
d. Both b and c
Answer: A

Reason : xp is polynomial function and kx is exponential function. Exponential
functions grow faster than polynomial. Hence answer A.

Q3. For functions, nk and cn , what is the asymptotic relationship between these
functions? Assume that k ≥ 1, and c ≥ 1 are constant.
a. nk is O(cn)
b. nk is Ω(cn)
c. nk is Θ(cn)
d. None of the above
Answer: This question was stated incorrectly. So everyone gets a bonus point for
this one.

Q4. If f(n) = 5 lg n + 2 lg n! + (n2 + 1) lg n, what is the big-O notation for f(n)?
a. n
b. n2
c. n lg n
d. n2 lg n
Answer: D

Reason : The equation with highest power of n is (n2 + 1)lg n . Hence it will grow
with n2 lg n.

Q5. What is the time complexity for the following piece of code?

 sum = 0;
 for (int i = 0; i < n; i++)
 for (j = 1; j < n; j = j * 2)
 sum += n;
a. O(n2)
b. O(n)
c. O(lg n)
d. O(n lg n)
Answer: D

Reason : The outer loop will run with time complexity of n and inner loop will run
with time complexity of lg n. Hence, O(n lg n).

Q6. If f(x) = (x3 − 1) / (5x + 1) then f(x) is
a. O(x2)
b. O(x)
c. O(x3/5)
d. O(1)
Answer: A

Reason : The highest power of x will be x2.

Q7. The Big-O complexity of 1 + 2 + 3 + 4 ... + n is? (Assume we must add the
numbers one at a time, rather than using Gauss's trick to get a closed form for the
sum.)
a. O(n)
b. O(n2)
c. O(3n)
d. O(n3)
Answer: A

Reason:Here, the function will grow in linear manner. Hence O(n).

Q8. The Big-O complexity of 1 + 2 + 3 + 4 + ... + 100 is? (Assume we must add
the numbers one at a time, rather than using Gauss's trick to get a closed form for
the sum.)

a. O(1)
b. O(n)
c. O(n2)
d. O(3n)
Answer: A

Since we know the total numbers to be added, the function growth is going to
remain constant. Hence, O(1).

 Q9. What is big O for following code?

 void complex(int n)
 {
 int i, j;
 for(i = 1; i < n; i++) {
 for(j = 1; j < log(i); j++)
 }
 printf("Algorithms");
 }
Answer: O(n lg n), O(lg(n!))
Reason : As we can see the inner loop will run max logn times and the outer loop
runs for n times so n times logn operations would be executed so complexity is
nlogn.

Q10. What is big O for following code?

 void complex(int n)
 {
 int i;
 for(i = n; i > 0; i = i/2){
 printf("Algorithms")
 }
 }
Answer: O(logn)
Reason :As we can see after each iteration of the loop the value of i divides by 2.
As we know that Time Complexity of a loop is considered as O(Logn) if the loop
variables is divided / multiplied by a constant amount.

