Design and Analysis of Algorithms - Assignment 1

Q1. If $f(n)=3 n^{2}+n^{3} \lg n$, then $f(n)$ is
a. $\quad O(n 2)$
b. $\quad O\left(n^{3 / 2}\right)$
c. $\quad O\left(n^{3} \lg n\right)$
d. $\quad O\left(n^{2} / 3\right)$

Answer: C

Reason: Highest power of n is $n^{3} \lg n$. Hence answer C.

Q2. What is the asymptotic relationship between the functions: x^{p} and k^{x} ?
(Assuming that $p \geq 1$ and $k>1$ are constants:)
a. $\quad x^{p}$ is $O\left(k^{x}\right)$
b. $\quad k^{x}$ is $O\left(x^{p}\right)$
c. $\quad x$ is $O(k)$
d. Both b and c

Answer: A

Reason : x^{p} is polynomial function and k^{x} is exponential function. Exponential functions grow faster than polynomial. Hence answer A.

Q3. For functions, nk and cn , what is the asymptotic relationship between these functions? Assume that $k \geq 1$, and $c \geq 1$ are constant.
a. $\quad n^{k}$ is $\mathrm{O}(\mathrm{cn})$
b. $\quad n^{k}$ is $\Omega(c n)$
c. $\quad n k$ is $\Theta(c n)$
d. None of the above

Answer: This question was stated incorrectly. So everyone gets a bonus point for this one.

Q4. If $f(n)=5 \lg n+2 \lg n!+\left(n^{2}+1\right) \lg n$, what is the big-O notation for $f(n)$?
a. $\quad \mathrm{n}$
b. $\quad n^{2}$
c. $\quad n \lg n$
d. $\quad n^{2} \lg n$

Answer: D

Reason : The equation with highest power of n is $\left(n^{2}+1\right) \lg n$. Hence it will grow with $n^{2} \lg n$.

Q5. What is the time complexity for the following piece of code?

$$
\begin{aligned}
& \text { sum }=0 ; \\
& \text { for (int } i=0 ; i<n ; i++) \\
& \quad \text { for }(j=1 ; j<n ; j=j * 2) \\
& \quad \text { sum }+=n ;
\end{aligned}
$$

a. $\quad \mathrm{O}(\mathrm{n} 2)$
b. $\quad O(n)$
c. $\quad O(\lg n)$
d. $\quad O(n \lg n)$

Answer: D

Reason: The outer loop will run with time complexity of n and inner loop will run with time complexity of $\lg n$. Hence, $O(n \lg n)$.

Q6. If $f(x)=\left(x^{3}-1\right) /(5 x+1)$ then $f(x)$ is
a. $\quad O\left(x^{2}\right)$
b. $\quad \mathrm{O}(\mathrm{x})$
c. $\quad O\left(x^{3} / 5\right)$
d. $\quad \mathrm{O}(1)$

Answer: A

Reason : The highest power of x will be x^{2}.

Q7. The Big-O complexity of $1+2+3+4 \ldots+n$ is? (Assume we must add the numbers one at a time, rather than using Gauss's trick to get a closed form for the sum.)
a. $\quad O(n)$
b. $\quad \mathrm{O}\left(\mathrm{n}^{2}\right)$
c. $\quad \mathrm{O}(3 \mathrm{n})$
d. $\quad O\left(n^{3}\right)$

Answer: A

Reason:Here, the function will grow in linear manner. Hence $O(n)$.

Q8. The Big-O complexity of $1+2+3+4+\ldots+100$ is? (Assume we must add the numbers one at a time, rather than using Gauss's trick to get a closed form for the sum.)
a. $\quad O(1)$
b. $\quad O(n)$
c. $\quad \mathrm{O}(\mathrm{n} 2)$
d. $\quad O(3 n)$

Answer: A

Since we know the total numbers to be added, the function growth is going to remain constant. Hence, O(1).

Q9. What is big O for following code?

```
void complex(int n)
{
    int i, j;
    for(i=1; i < n; i++) {
        for(j = 1; j < log(i); j++)
    }
    printf("Algorithms");
}
```

Answer: $\mathrm{O}(\mathrm{n} \lg \mathrm{n}), \mathrm{O}(\lg (\mathrm{n}!))$
Reason : As we can see the inner loop will run max logn times and the outer loop runs for n times so n times logn operations would be executed so complexity is nlogn.

Q10. What is big O for following code?

```
void complex(int n)
{
    int i;
    for(i=n; i> 0; i= i/2){
            printf("Algorithms")
        }
}
```

Answer: O(logn)
Reason :As we can see after each iteration of the loop the value of i divides by 2.
As we know that Time Complexity of a loop is considered as O(Logn) if the loop variables is divided / multiplied by a constant amount.

